Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface
نویسندگان
چکیده
Cellulose nanocrystals (CNCs) were prepared by acidic hydrolysis of cotton fibers (Whatman #1 filter paper). In our efforts to select conditions in which the hydrolysis media does not install labile protons on the cellulose crystals, a mineral acid other than sulfuric acid (H2SO4) was used. Furthermore, in our attempts to increase the yields of nanocrystals ultrasonic energy was applied during the hydrolysis reaction. The primary objective was to develop hydrolysis reaction conditions for the optimum and reproducible CNC production. As such, the use of hydrobromic acid (HBr) with the application of sonication as a function of concentration (1.5–4.0 M), temperature (80–100 C), and time (1–4 h) was examined. Applying sonic energy during the reaction was found to have significant positive effects as far as reproducible high yields are concerned. Overall, the combination of 2.5 M HBr, 100 C, and 3 h associated with the sonication during the reaction generated the highest nanocrystal yields. In addition to the optimization study three types of surface modifications including TEMPO-mediated oxidation, alkynation, and azidation were used to prepare surfaceactivated, reactive CNCs. Subsequently, click chemistry was employed for bringing together the modified nanocrystalline materials in a unique regularly packed arrangement demonstrating a degree of molecular control for creating these structures at the nano level.
منابع مشابه
Photoresponsive Cellulose Nanocrystals
In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essent...
متن کاملRegular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels.
Over a number of years work in our laboratory has been developing new chemistry for the use of cellulose nanocrystals (CNCs) as scaffolds for the creation of nanomaterials with novel, stimuli responsive characteristics. Our work takes advantage of the rigid nature of CNCs, the unique nanopattern etched on their surface in the form of regularly spaced primary OH groups, and the fact that these m...
متن کاملThe effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper
Present paper examines the effect of acid type and hydrolysis conditions on morphology, size, yield and crystallinity of produced cellulose nanocrystal (CNC). Cellulose obtained from waste office paper was hydrolyzed under the same conditions by Maleic acid (MA) and Sulfuric Acid (SA) in separate treatments. Also this cellulose was hydrolyzed under different timing and temperature by MA and SA...
متن کاملThe effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper
Present paper examines the effect of acid type and hydrolysis conditions on morphology, size, yield and crystallinity of produced cellulose nanocrystal (CNC). Cellulose obtained from waste office paper was hydrolyzed under the same conditions by Maleic acid (MA) and Sulfuric Acid (SA) in separate treatments. Also this cellulose was hydrolyzed under different timing and temperature by MA and SA...
متن کاملHighly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were used, the resultant CNC surf...
متن کامل